Features

－External crystal oscillator
4MHz：count up to 44,000 counts
（input range：$\pm 440 \mathrm{mV}$ ）
10 MHz ：emulated up to 440,000 counts

$$
\text { (input range: } \pm 440 \mathrm{mV} \text {) }
$$

－Four selectable conversion rates：
20，10，5， 2 conversion／sec
－On chip resistance switches for range Changing．
－Voltage（DC／AC），current（DC／AC），resistor， diode，capacitance，frequency and duty cycle measurement
－ 400 mV independent input
－on chip OP amp＇for AC／DC conversion
－Auto zeroing function
－Peak hold function with calibration mode （Taiwan patent no．：476418）
－X10 function
－I／O port for microprocessor
－Capacitance measurement
（Taiwan patent no．：453443）
$\mathbf{- 4 n F}$ to $\mathbf{4 0 m F}$ ，count up to $\mathbf{4 0 , 0 0 0}$ counts
－Discharging indication
－ 400 MHz Frequency counter and 1 MHz duty cycle measurement
－On chip buzzer driving： $\mathbf{2 K H z}$
－Single 5V DC power supply（V＋to V－）
－Low battery detection
－SLEEP mode
－64－pin QFP

Description

The ES51966 is a $44,000 / 440,000$－count dual－slope analog－to－digital converter （ADC）with X10 and PEAK Hold functions．The ES51966 also include capacitance，frequency and duty cycle measurement．The conversion rate and resolution can be selected／decided by external microprocessor．In additional， other functions are also provided for low battery detection，on chip buzzer driving， and I／O port with microprocessor．

Absolute Maximum Ratings

Characteristic	Rating
Positive Supply Voltage （V＋to AGND）	3.5 V
Negative Supply Voltage （V－to AGND）	-3.5 V
Analog I／O Voltage	$((\mathrm{V}-)-0.5 \mathrm{~V})$ to $((\mathrm{V}+)+0.5 \mathrm{~V})$
Digital I／O Voltage	$((\mathrm{V})-0.5 \mathrm{~V})$ to $((\mathrm{V}+)+0.5 \mathrm{~V})$
Power Dissipation	800 mW
Operating Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Lead Temperature （soldering，10sec）	$270^{\circ} \mathrm{C}$

Electrical Characteristics

$\mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{DGND}=\mathrm{AGND}=0 \mathrm{~V}$

Symbol	Parameter	Test Condition	Min．	Typ．	Max．	Unit
V＋	Positive Power Supply		2.3	2.5	2.7	V
V－	Negative Power Supply		－2．3	－2．5	－2．7	V
$\mathrm{I}(\mathrm{V}+$ ）	Operation Supply Current	Normal power on（V＋to V－）	－	1.0	1.7	mA
I（GND）	Supply Current of DGND to V－	$\Delta \mathrm{V}$ between DGND and V －is $-0.2 \mathrm{~V}$	5	10	－	mA
Zero	Zero Input Reading	$1 \mathrm{M} \Omega$ input resistor，null to zero by uP．	－0	0	＋0	count
NLV1	Nonlinearity（Voltage x1）	Best case straight line	－0．01	－	0.01	\％F．S．
REV1	Rollover Error （Voltage x1）	$1 \mathrm{M} \Omega$ input resistor	－0．01	－	0.01	\％F．S．
NLV10	Nonlinearity （Voltage x 10 ）	Best case straight line	－0．1	－	0.1	\％F．S．
REV10	Rollover Error （Voltage x10）	$1 \mathrm{M} \Omega$ input resistor	－0．1	－	0.1	\％F．S．
V12	Band Gap Voltage Reference	$100 \mathrm{k} \Omega$ between V12 and AGND	－1．31	－1．23	－1．10	V
LBATT	Low Battery Detection	LBATT to V12	－60	0	60	mV
	PEAK Hold value accuracy （10us）	使用 10 nF 聚乙酯薄膜電容 （polyester，Mylar）	$\begin{aligned} & -1.2 \\ & -25 \end{aligned}$	－	$\begin{aligned} & +1.2 \\ & +25 \end{aligned}$	$\begin{aligned} & \hline \text { \%F.S. } \\ & \pm \text { count } \end{aligned}$
TCRF	Reference Voltage（V12） Temperature Coefficient	$100 \mathrm{k} \Omega$ between V12 and AGND $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$	－	50	－	ppm／${ }^{\circ} \mathrm{C}$

Pin configuration

QFP－64pin

Pin Description

Pin No．	Symbol	Type	Description
1	CAZ	O	Auto－zero capacitor connection
2	RAZ	O	Auto－zero resistance connection
3	CINT	O	Integration capacitor connection
4	BUF	O	Integration resistor connection output
5	BUFX10	O	Integration resistor connection output
6	Cref－	I／O	Negative connection for reference capacitor
7	Cref +	I／O	Positive connection for reference capacito
9	IVSH	I	High current measurement input
10	IVSL	I	Low current measurement input
11	TEST5	I／O	Test Pin
12	ACVL	O	Negative output of AC to DC converter
13	ACVH	O	Positive output of AC to DC converter．
14	ADI	I	Negative input of internal AC to DC OpAmp
15	ADO	O	Output of internal AC to DC OpAmp．

Continued on next page

$43 / 4$ and 5 3／4 A／D（Peak \＆Cap）

Pin No．	Symbol	Type	Description
17	OVX	I	Input high voltage for resistance measurement．
18	OVH	I	Output connection for resistance measurement．
20	OVSG	I	Sense low voltage for resistance measurement．
21	OR1	O	Reference resistor connection for 399.9Ω range．
22	VR5	O	Voltage measurement $\div 10000$ attenuator（ 4000 V ．）
23	VR4	O	Voltage measurement $\div 1000$ attenuator（ 400.0 V ．）
24	VR3	O	Voltage measurement $\div 100$ attenuator（ 40.00 V ．）
25	VR2	O	Voltage measurement $\div 10$ attenuator（4．000V．）
27	SGND	G	Signal Ground．
29	VR1	I	Measurement input．
31	V400m	I	400 mV independent input．
34	PMIN	O	Minimum peak hold output．
35	PMAX	O	Maximum peak hold output．
37	VRH	O	Output of band－gap voltage reference．Typically -1.2 V
38	VR	O	Reference input voltage connection．Typically -200 mV
40	CCMP	I	In capacitor mode，a compensation capacitor is connected．
41	R9K	O	Connect to a $9 \mathrm{~K} \Omega$ resistor for capacitor measurement
42	R1K	O	Connect to a $1 \mathrm{~K} \Omega$ resistor for capacitor measurement．
43	CA－	I／O	Negative auto－zero capacitor connection for capacitor measurement．
44	CA＋	I／O	Positive auto－zero capacitor connection for capacitor measurement．
46	FREQ	I	Frequency counter input，offset to V－／2
48	BUZIN	I	Enables the buzzer．High action．
49	BUZOUT	O	Outputs a 2 KHz audio frequency signal for driving piezoelectric buzzer when BUZIN is High．
50	OSC1	I	Crystal oscillator input connection．
51	OSC2	O	Crystal oscillator output connection．
52	EOC	O	End of conversion indicator
53	VCC	I	The high level of digital I／O signals，which is connected to VCC pin of microprocessor．
54	STATUS	I／O	ES51966 sends current status to microprocessor or receives controlled status from microprocessor．
55	SCLK	I	Clock input from microprocessor．
56	OSC4M	I	Crystal oscillator selection．NC for 4MHz；connect to V－for 10 MHz ．
57	V－	P	Negative supply voltage，connected to cathode of battery typically．
58	V－	P	Negative supply voltage，connected to cathode of battery typically．
59	DGND	G	Digital Ground（ Output of on－chip DC－DC converter ）， $\mathrm{V}_{\mathrm{DGND}}=(\mathrm{V}+-\mathrm{V}-) / 2$
60	AGND	G	Analog Ground
61	AGND	G	Analog Ground
62	V＋	P	Positive supply voltage
63	V＋	P	Positive supply voltage
64	LBATT	I	Low battery voltage detection
$\begin{aligned} & 8,16,19,26,28,30,32,33 \\ & 36,39,45,47 \end{aligned}$			No connected
P：Power，			G：Ground，I：Input，O：Otput

Operation Mode

（1）Digital Interface between ES51966 and Microprocessor

The EOC，SCLK and STATUS of the ES51966 are used as digital communicating interface between ES51966 and microprocessor．The STATUS pin is bi－directional，and the others are unilateral：EOC is from ES51966 to microprocessor and SCLK is from microprocessor to ES51966．The timing and data of the communication are as follows：
mode 1：ES51966 receives controlled status from microprocessor．

Timing of the above figure：$\quad(T=0.25 \mu \mathrm{~s})$

t_{1}	$(1040 \sim 4096) T$	t_{6}	$(32 \sim 512) T$
t_{2}	$512 T$	t_{7}	$(520 \sim 1020) T$
t_{3}	$(4 \sim 256) T$	t_{8}	$(0 \sim 256) T$
t_{4}	$>4 T$	t_{9}	$520 T$
t_{5}	$(16 \sim 1024) T$		
T			

Note：1．At START：
After time A，ES51966 enter into AZ phase．And at the same time，STATUS is changed from output pin to input pin with a 3uA pull low current provided by ES51966 internally．Then microprocessor can send control status to STATUS．It is suggested that microprocessor begins to drive STATUS between B and C．

2．At END：

The microprocessor stopped driving STATUS between D and E，and ES51966 will begin to drive STATUS after F．

承永資訊科技 CYRUSTEK CO．

3．The detail timing between SCLK and STATUS is as follow：

Serial Data Format（STATUS）：

F0	F1	F2	Q0	Q1	Q2	C0	C1
0	1	2	3	4	5	6	7

C2	AC	ZERO	PEAK	PHCAL	X10	SLEEP
8	9	10	11	12	13	14

（All defaults are＇ 0 ＇）
F0，F1，F2 measurement selection．

F0	F1	F2	Measurement
0	0	0	Voltage 2
0	0	1	Voltage with frequency 3
0	1	0	Current 2
0	1	1	Current with frequency 3
1	0	0	Resistance
1	0	1	Diode
1	1	0	Frequency and duty cycle
1	1	1	Capacitance

${ }^{1}$ In Frequency and duty cycle measurement，ES51966 measures both the frequency and duty cycle of the input signal FREQ（pin 46）simultaneously．
${ }^{2}$ In Voltage／Current measurement，only voltage／current is measured．
${ }^{3}$ In Voltage／Current with frequency measurement，the frequency of FREQ is also measured in addition to voltage／current．Detailed descriptions of these measurement modes，please see the following sections．

Q0，Q1，Q2 range selection．

Q0	Q1	Q2	V^{1}	$\mathrm{~A}^{1}$	Ω^{1}	$\mathrm{~F}^{3}$	C^{2}
0	0	0	440 mV	${\text { IVSL }(\operatorname{pin} 10)^{4}}^{4}$	420Ω	40 Hz	4.2 nF
0	0	1	4.4 V	IVSH $(\operatorname{pin} 9)^{4}$	$4.2 \mathrm{~K} \Omega$	400 Hz	42 nF
0	1	0	44 V		$42 \mathrm{~K} \Omega$	4 KHz	420 nF
0	1	1	440 V		$420 \mathrm{~K} \Omega$	40 KHz	4200 nF
1	0	0	4400 V		$4.2 \mathrm{M} \Omega$	400 KHz	40 uF
1	0	1			$42 \mathrm{M} \Omega$	4 MHz	400 uF
1	1	0				40 MHz	4000 uF
1	1	1				400 MHz	40000 uF

${ }^{1}$ When oscillator is 4 MHz ，voltage／current can be counted up to 44,000 ，and resistance can be counted up to 42,000 ．
When oscillator is 10 MHz ，voltage／current can be counted up to 440,000 ，and resistance can be counted up to 420,000 ．
${ }^{2}$ The ranges from 4.2 nF to 4200 nF have a maximum counts of 42000 ．The other ranges
from $40 u F$ to $40000 u F$ could only be counted up to 40,000 regardless the oscillator frequency．
${ }^{3}$ Frequency could only be counted up to 40,000 regardless the oscillator frequency．In 40 Hz range，ES51966 can count from 0.5 Hz to 40 Hz ；in 400 Hz range，it can count from 2.5 Hz to 400 Hz ；in 4000 Hz ，it can count from 25 Hz to 4000 Hz ．
${ }^{4}$ In Current measurement，two input pins（IVSH and IVSL）are provided and can be selected by Q2．
$\boldsymbol{C 0}, \boldsymbol{C 1}, \boldsymbol{C} 2$ In voltage（ $\mathrm{F}[0: 2 \mathrm{C}=$＂ 000 ＂）and current（＂010＂）measurement，C0 \＆C1 are used for conversion rate selection：

C0	C1	Conversion／sec	Conversion period
0	1	20	50 ms
0	0	10	100 ms
1	0	5	200 ms
1	1	2	500 ms

10,5 ，and 2 conversion $/ \mathrm{sec}$ are 50 Hz rejection，while 2 conversion $/ \mathrm{sec}$ is both of 50 Hz and 60 Hz rejections．

In resistance measurement，the conversion period is：

C0	C1	Conversion period
0	1	70 ms
0	0	140 ms
1	0	280 ms
1	1	700 ms

When PEAK or PHCAL function is ON，the conversion period becomes：

C0	C1	Conversion period
0	1	55 ms
0	0	110 ms
1	0	220 ms
1	1	550 ms

In frequency and duty cycle（ $\mathrm{F}[0: 2]=$＂ 110 ＂）measurement，only C 0 is used for conversion period selection．When the range is from 40 Hz to 4000 Hz ，the conversion periods are not selectable（see the description in Frequency and duty cycle measurement）；and when the range is from 40 KHz to 400 MHz ，the conversion period is decided by C 0 ：

C0	Conversion period
0	110 ms
1	1.1 s

In voltage／current with frequency mode（ $\mathrm{F}[0: 2]=$＂ 001 ＂and＂ 011 ＂），the conversion period is fixed at 110 ms ，and $\mathrm{C} 0, \mathrm{C} 1 \& \mathrm{C} 2$ decide the range of the frequency measurement：

C0	C1	C2	Range
0	-	-	40 KHz
1	0	0	400 KHz

承永資訊科技

1	0	1	4 MHz
1	1	0	40 MHz
1	1	1	400 MHz

In capacitance measurement，these bits are no use．
$\boldsymbol{A C}$＇ L ＇for DC；＇H＇for AC in Voltage／Current measurement．If not in voltage or current measurement，this bit will be ignored．Set $A C=1$ at resistance measurement will make readings of $4 M \Omega$ range more stable but slower response．
ZERO＇H＇for zero calibration．
PEAK＇H＇for PEAK Hold function in Voltage／Current measurement．
PHCAL＇H＇for PEAK Hold calibration mode in Voltage／Current measurement．
X10＇ H ＇for X10 function．
SLEEP＇H＇for DMM in sleep mode．
mode 2：ES51966 sends the status and counts（ counter from DINT ）to uP．

t_{0} is at least 5 ms and t_{l} must be $(32 \sim 512) T$ ，where $T=0.25 \mu \mathrm{~s}$ ．
t_{2} is the time from the falling edge of EOC to the last data been transferred．t_{2} is no more than 4.9 ms ．That is，all results must be transferred within 4.9 ms from the falling edge of EOC．

The detail timing between SCLK and STATUS is as follow：

Serial Data Format（STATUS）：
－Voltage（＂000＂），current（＂010＂），resistance（＂100＂）and diode（＂101＂）
measurement

SIGN	PMAX	BATT	D0＜0：19＞$(20$ bits $)$
0	1	2	$3 \sim 22$

SIGN＇H＇for negative；＇L＇for positive．In AC，Ω and diode measurement，this bit can be ignored．
PMAX When PEAK or PHCAL is executed，＇H＇for PEAK MAX．measurement，＇L＇ for PEAK MIN．measurement．
$\boldsymbol{B A T T}$＇ H ＇for battery－low indication．
$\boldsymbol{D} \mathbf{0}<\mathbf{0}: 19>$ Conversion results（magnitude）．The format is binary code．LSB outputs first．When oscillator is $4 \mathrm{MHz}, \mathrm{D} 0<0: 19>$ is up to 44,000 counts．When oscillator is 10 MHz ，if the conversion rate is $20 / \mathrm{sec}$ ，it counts to 220,000 ；if the conversion rate is not $20 / \mathrm{sec}$ ，it counts to 440,000 ．

－Capacitance（＂111＂）measurement：

DISCH	0	BATT	D0＜0：19＞$(20$ bits $)$
0	1	2	$3 \sim 22$

DISCH＇ H ＇indicates that DMM is under discharging．If this bit is＇ H ＇，ES51966 enters AZ mode，and discharges the capacitor automatically．However，discharging through ES51966 is slow，and the customer had better discharge by shorting two pins of the capacitor．When DISCH is＇H＇，all the STATUS never outputs（EOC is never high），but the status of DISCH will be on the STATUS pin．Therefore，uP should keep an eye on the STATUS pin when capacitance measurement to know if the capacitor needs to be discharged．
0 This bit is always zero．
$\boldsymbol{B A T T}$＇ H ＇for battery－low indication．
D0＜0：19＞Conversion results（magnitude）．The format is binary code．LSB outputs first．

－Voltage／current with frequency（＂001＂\＆＂ 010 ＂）measurement：

SIGN	PMAX	BATT	D0 $<0: 19>(20$ bits $)$	D $1<0: 17>(18$ bits $)$
0	1	2	$3 \sim 22$	$23 \sim 40$

SIGN For voltage／current measurement．＇H＇for negative；＇L＇for positive．In AC，Ω and diode measurement，this bit can be ignored．
PMAX For voltage／current measurement．When PEAK or PHCAL is executed，＇ H ＇ for PEAK MAX．measurement，＇L＇for PEAK MIN．measurement．
$\boldsymbol{B A T T}$＇ H ＇for battery－low indication．

D0＜0：19＞Conversion result of voltage or current measurement．
D1＜0：17＞Conversion result of frequency measurement．
－Frequency（＂110＂）measurement：

OL	UL	BATT	D0 $<0: 19>(20$ bits $)$	D $1<0: 17>(18$ bits $)$	D $2<0: 5>$（ 6 bits $)$
0	1	2	$3 \sim 22$	$23 \sim 40$	$41 \sim 46$

OL Overflow when in 40,400 and 4000 Hz ranges．
$\boldsymbol{U L}$ Underflow when in 40,400 and 4000 Hz ranges．
BATT＇H＇for battery－low indication．
$\boldsymbol{D 0} \mathbf{0 0}: \mathbf{1 9}>, \boldsymbol{D} \mathbf{1}<\mathbf{0}: \mathbf{1 7}>, \boldsymbol{D} \mathbf{2}<\mathbf{0}: \mathbf{5}>$ Please see the description in frequency and duty cycle measurement．

（2）Dual Slope A／D—four phases timing

The ES51966＇s measurement cycle contains four phases，ZI，AZ，INT，and DINT． The timing will be changed as conversion rate changed．There are some examples as follow，and the others are alike．

ES51966 is a dual－slope analog－to－digital converter（ADC）．Figure 2.1 is a structure of dual－slope integrator．Its measurement cycle has two distinct phases：input signal integration（INT）phase and reference voltage integration（DINT）phase．

In INT phase，the input signal is integrated for a fixed time period，then A／D enters DINT phase in which an opposite polarity constant reference voltage is integrated until the integrator output voltage becomes to zero．Since both the time for input signal integration and the reference voltage are fixed，the de－integration time is proportional to the input signal．Hence，we can define the mathematical equation about input signal， reference voltage integration（see Figure 2．1）：

$$
\begin{aligned}
& \frac{1}{B u f} \times C \text { int } \int_{0}^{T_{N T}} V_{I N}(t) d t=\frac{1}{B u f \times C \text { int }} \times V_{R E F} \times T_{D I N T} \\
& \text { where, }, V_{I N}(t)=\text { input signal } \\
& V_{R E F}=\text { reference voltage } \\
& T_{I N T}=\text { integration time (fixed) } \\
&\left.T_{D I N T}=\text { de-integration time (proportional to } V_{I N}(t)\right)
\end{aligned}
$$

If $V_{I N}(t)$ is a constant，we can rewrite above equation：

$$
T_{D I N T}=\frac{T_{I N T}}{V_{R E F}} \times V_{I N}
$$

Besides the INT phase and DINT phase，ES51966 exploits auto zero（AZ）phase and zero

承永資訊科技 CYRUSTEK CO．
integration（ZI）phase to achieve accurate measurement．In AZ phase，the system offset is stored．The offset error will be eliminated in DINT phase．Thus a higher accuracy could be obtained．In ZI phase，the internal status will be recovered quickly to that of zero input． Thus the succeeding measurements won＇t be disturbed by current measurement especially in case of overload．

Figure 2.1 the structure of dual－slope integrator and its output waveform．

As mentioned above，the measurement cycle of ES51966 contains four phases：
（1）auto zero phase（AZ）
（2）input signal integration phase（INT）
（3）reference voltage integration phase（DINT）
（4）zero integration phase（ZI）
Normally，the time ratios of these four phases，AZ，INT，DINT and ZI to the entire measurement cycle are $20 \%, 20 \%, 44 \%$ and 16% respectively．However the actual duration of each phase depends on conversion rate．The time of each conversion rate are shown in the table below in which voltage／current（without PEAK HOLD or frequency）， and diode measurement use this conversion time．

$\mathrm{C}[0: 1]$	CR（times／sec）	ZI（ms）	AZ（ms）	INT（ms）	DINT（ms）
01	20	8	10	10	22
$\mathbf{0 0}$	$\mathbf{1 0}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 0}$	$\mathbf{4 4}$
10	5	32	40	40	88
11	2	80	100	100	220

Note： $\operatorname{Vref}=-200 \mathrm{mV}$ ．

（3）Component Value Selection for ADC

For various application requirements on conversion rate and input full range，we suggest nominal values for external components of ADC in Figure 2.1 to obtain better performance．Under default condition with operating clock $=4 \mathrm{MHz}$ ：
（1）conversion rate $=10$ times $/ \mathrm{sec}$
（2）reference voltage $=-200 \mathrm{mV}$
（3）input signal full scale $=440 \mathrm{mV}$（sensitivity $=10 \mathrm{uV}$ ）
we suggest that Cint $=33 \mathrm{nF}, \mathrm{Buf}=200 \mathrm{k} \Omega, \mathrm{Raz}=200 \mathrm{k} \Omega$ ．
If a user selects a different conversion rate rather than default，the integration capacitor Cint value must be changed according to the following rule for better performance：

Cint $\times($ conversion rate $)=(33 \mathrm{nF}) \times(10$ times $/$ sec $)$.
It is important that the actual Cint value should be no less than the nominal value．A smaller Cint reduces the input full range．However a larger Cint might have weaker noise immunity than the suggested one．

A user could enlarge the input full range by changing reference voltage（Vref）and the amount of integration resistor（Buf and Raz）．For example，if Vref，Buf and Raz are enlarged as twice than the default values then the input full range becomes 880 mV ．The input full range can be enlarged up to 1.1 V （ 2.5 times than the default case）．We list general rules in below which might be helpful in determining component values．

Buf $/($ reference voltage $)=200 \mathrm{k} \Omega /(-200 \mathrm{mV})$

（4）Voltage Measurement

DC／AC voltage measurement

A re－configurable voltage divider provides a suitable full－scale range voltage measurement mode．The following table summarizes the full－scale ranges in each configuration．

Configuration	Full Scale Range	Divider Ratio	Resister Connection
VR1	440.00 mV	1	-
VR2	4.4000 V	$1 / 10$	$\mathrm{R} 2 /(\mathrm{R} 1+\mathrm{R} 2)$
VR3	44.000 V	$1 / 100$	$\mathrm{R} 3 /(\mathrm{R} 1+\mathrm{R} 3)$
VR3	440.00 V	$1 / 1000$	$\mathrm{R} 4 /(\mathrm{R} 1+\mathrm{R} 4)$
VR5	4400.0 V	$1 / 10000$	$\mathrm{R} 5 /(\mathrm{R} 1+\mathrm{R} 5)$

In configuration VR1，the full range is 440 mV ，and the voltage inputs from V400m pin to prevent the influence of noise when floating．In other configurations，the voltage inputs
from VR1 pin．
Pin 11 to 15 are used for AC measurement．Figure 4.1 is the AC－to－DC circuit． AC－to－DC circuit extracts the AC part of the voltage（ADO－TEST5）．ADC then converts the voltage of（ACVH－ACVL）to acquire the AC value of input voltage． Variable resistor $5 \mathrm{~K} \Omega$ is used to adjust the DC offset．Light shielding for diode D1 and D 2 is required to prevent leakage current．This circuit works properly only when the input voltage is sinusoidal．If the input is not sinusoidal（e．g．，square waves），a true RMS－to－DC converter chip will be needed to obtain the correct true RMS value of input signal．

If ADO and ADI short directly，ADI is the divided voltage of the input signal． Therefore，it can be used for oscillator display．

Figure 4．1 AC－to－DC circuit

The measurement of true RMS using ES636

If ES636 is used for true RMS measurement，the suggested application circuit is shown in Figure 4．2．When ES636 is used for true RMS，ADO and ADI pin short together， TEST5 pin keeps floating，and ACVL pin connects to AGND．And the OVSG pin short to AGND through a switch．

Figure 4．2 AC－to－DC circuit using ES636

（5）Diode Measurement

Diode measurement mode shares the same configuration with 4.4000 V voltage mode． The range select bits Q0，Q1 and Q2 are not active in this mode．

（6）Current measurement

Current measurement has three mode．The following table summarizes the full scale range of each mode．

Mode	Range Selection	Full scale
uA	IVSL $/$ IVSH	$440.00 \mathrm{uA} / 4400.0 \mathrm{uA}$
mA	IVSL $/$ IVSH	$44.000 \mathrm{~mA} / 440.00 \mathrm{~mA}$
10 A	IVSH	44.000 A

＊Operation Mode is based on application circuit ．
＊Range selection ：IVSL（ Q0，Q1，Q2 ）＝（ 0，0，0 ）
IVSH (Q0,Q1,Q2) = (0,0,1)

承永資訊科技
CYRUSTEK CO．

（7）Multiplying by 10 （X10）Function

ES51966 includes X10 function．In X10 function mode，the output will be increasing tenfold．But the input range will be reduced to $\pm 44 \mathrm{mV}$ ．For example，if X10 function is enabled and the input is 10 mV ，output will be 10,000 counts，rather than 1,000 counts．To achieve X10 function，the integration resistor is $20 \mathrm{~K} \Omega$ ，not $200 \mathrm{~K} \Omega$ at INT phase，and remains $200 \mathrm{k} \Omega$ at DINT phase．Because the resistor（ $20 \mathrm{~K} \Omega$ ）requires exactly $1 / 10$ of

Figure 5．1 X10 function
integration resistor $(200 \mathrm{~K} \Omega)$ ，a variable resistor VR is used to compensate these two resisters．

Resistor scheme of AZ／INT／DINT phases

In ES51966，an on－chip resistor is used for AZ mode．The internal chip is about $10 \mathrm{k} \Omega$ ． The connection is shown in the following Figure 5．2．

Figure 5．2 Resistor scheme of AZ phase
The status of switches A，B and C are described in the following table．

switch	X10 function is OFF			X10 function is ON		
	INT phase	DINT phase	AZ phase	INT phase	DINT phase	AZ phase
A	ON	ON	ON	OFF	ON	ON
B	OFF	OFF	ON	ON	OFF	ON
C	OFF	OFF	ON	OFF	OFF	ON

承永資訊科技 CYRUSTEK CO．

In AZ phase，all the switches is ON，the effective resistor is all the resistors in parallel． The effective resistor is therefore less than $10 \mathrm{k} \Omega$ ．If X10 function is never used，the matching between $200 \mathrm{k} \Omega$ and（ $\mathrm{VR}+18 \mathrm{k} \Omega$ ）is not necessary．In this situation，（ $\mathrm{VR}+$ $18 \mathrm{k} \Omega$ ）can be replaced by a resistor about $20 \mathrm{k} \Omega$ ，or simply omitted．

（8）ZERO Calibration

In ES51966，the inherent delay of the OPAMP will introduce a few counts to the output． The method to prevent this problem is zero calibration．When zero calibration is ON， ES51966 shorts the input to SGND internally．uP needs to save the results of zero input． After zero calibration is OFF，the result of zero input is then deduct from the counts of the following measurements．

Zero calibration can be enabled on any measurement．When the ZERO bit is set by uP， ES51966 begins to execute zero calibration．ES51966 stops executing zero calibration until the ZERO bit is reset by uP．

In voltage／current／diode／capacitance measurement，the de－integration voltage is fixed， therefore zero calibration needs only be enabled once．The results could be used for all the following voltage／current／diode／capacitance measurement．However，in resistance measurement，the de－integration voltage is not fixed，and varies with the resistance to be measured．That is，zero calibration must be re－done if the resistance to be measured changes．For convenience，the result of zero input in voltage measurement could be used in resistance measurement．

（9）PEAK Hold Function

Only when voltage and current measurement（ $\mathrm{F}[0: 2]=$＂ 000 ＂to＂ 011 ＂）could the PEAK HOLD function be executed．In PEAK HOLD measurement，the instant maximum and minimum values of the input voltage（or current）are stored and transferred to digital data through ADC．Pmax and Pmin are measured alternately while Pmax first．PEAK HOLD calibration measures the offset voltages（Vos）of Pmax and Pmin alternately and the ES51966 will count them to digital data．Then ES51966 sends the counts to microprocessor，and microprocessor must record them．

Because of existence of the offset voltage，the DINT time of voltage measurement with PEAK HOLD requires longer than that of voltage measurement without PEAK HOLD．The time of each phase when PEAK HOLD is executed at various conversion rate are as follow：

ES51966
CYRUSTEK CO． $43 / 4$ and 5 3／4 A／D（Peak \＆Cap）

$\mathrm{C}[0: 1]$	ZI（ms）	AZ（ms）	INT（ms）	DINT（ms）	Total time（ms）
01	8	10	10	27	55
$\mathbf{0 0}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 0}$	$\mathbf{5 4}$	$\mathbf{1 1 0}$
10	32	40	40	108	220
11	80	100	100	270	550

If zero and peak functions are set to ON at the same time by uP ，peak function will be disabled by zero function．If peak function is set to ON at non－voltage／current measurement，it will also be disabled．

PEAK Hold calibration：

Note：it is not necessary to set PEAK to H at the same time．

To active PEAK Hold after calibration：

To cancel PEAK Hold function：

Note：After changing X10 mode，if we want to active PEAK Hold function，we must active calibration again．

（10）Frequency and duty cycle

When F［0：2］＝＂110＂，ES51966 calculates frequency and duty cycle of FREQ at the same time．However，some more computations are required to obtain both the results．There are three output data at this measurement：D0，D1，and D2 which can be obtained from the serial output．
－40Hz range：

$$
\text { Frequency }=\frac{(\mathrm{D} 2+1) \times 10^{6}}{5 \times(150,950+\mathrm{D} 1)}, \quad \text { Duty cycle }=\frac{100 \times \mathrm{D} 0}{150950+\mathrm{D} 1} \%
$$

－ 400 Hz range

$$
\text { Frequency }=\frac{(\mathrm{D} 2+1) \times 10^{6}}{150,950+\mathrm{D} 1}, \quad \text { Duty cycle }=\frac{100 \times \mathrm{D} 0}{150,950+\mathrm{D} 1} \%
$$

－ 4000 Hz range

$$
\text { Frequency }=\frac{(\mathrm{D} 2+1) \times 10^{7}}{150,950+\mathrm{D} 1}, \quad \text { Duty cycle }=\frac{100 \times \mathrm{D} 0}{150,950+\mathrm{D} 1} \%
$$

－ 40 KHz to 400 MHz range（D2 is not needed．）
when $\mathrm{C}[0]=0$

$$
\text { Frequency }=10 \times \mathrm{D} 1 \quad, \quad \text { Duty cycle }=\frac{\mathrm{D} 0}{200} \%
$$

when $C[0]=1$

$$
\text { Frequency }=\text { D1 } \quad, \quad \text { Duty cycle }=\frac{\mathrm{D} 0}{200} \%
$$

ES51966 can measure frequency from 0.5 Hz to 409.6 MHz ．For each range，the measurable frequencies and resolution are shown in the following table：

Range	Measured frequency range	Resolutions
40 Hz	$0.5 \mathrm{~Hz} \sim 40 \mathrm{~Hz}$	0.001 Hz
400 Hz	$2.5 \mathrm{~Hz} \sim 400 \mathrm{~Hz}$	0.01 Hz
4000 Hz	$25 \mathrm{~Hz} \sim 4000 \mathrm{~Hz}$	0.1 Hz
40 KHz	$0 \sim 40.96 \mathrm{KHz}$	1 Hz
400 KHz	$0 \sim 409.6 \mathrm{KHz}$	10 Hz
4 MHz	$0 \sim 4.096 \mathrm{MHz}$	100 Hz
40 MHz	$0 \sim 40.96 \mathrm{MHz}$	1 KHz
400 MHz	$0 \sim 409.6 \mathrm{MHz}$	10 KHz

At $40 / 400 / 4000 \mathrm{~Hz}$ ，if the input frequency is less than its measurable range，it＇s underflow， and UL will set to＇ H ＇．At the same ranges，if the input frequency is greater than its measurable range，it＇s overflow，and OL will set to＇ H ＇．When UL or OL occur，the data D0，D1，and D2 will not be correct，please ignore them．At $40 \mathrm{KHz} \sim 400 \mathrm{MHz}$ ranges，OL and UL are always＇L＇，but it＇s overflow when the output counts is 40,960 ．

承永資訊科技 CYRUSTEK CO．

At different range，the conversion time is different．At $40 / 400 / 4000 \mathrm{~Hz}$ ，the conversion time is according to the input frequency．At other ranges，the conversion time is fixed at 110 ms or 1.1 s with $\mathrm{C}[0]=0$ or 1 ，respectively．

Range	Conversion time	
	$C[0]=0$	$C[0]=1$
40 Hz	$0.8 \mathrm{~s} \sim 2 \mathrm{~s}$	
400 Hz	$0.16 \mathrm{~s} \sim 0.4 \mathrm{~s}$	
4000 Hz	$0.16 \mathrm{~s} \sim 0.4 \mathrm{~s}$	
40 KHz	110 ms	1.1 s
400 KHz	110 ms	1.1 s
4 MHz	110 ms	1.1 s
40 MHz	110 ms	1.1 s
400 MHz	110 ms	1.1 s

（11）Voltage／Current Measurement with Frequency Counter

When $\mathrm{F}[0: 2$ ］＝＂001＂or＂011＂，ES51966 measures frequency of input together with voltage／current．At this measurement mode，voltage（or current）input is VR1／400mV（or IVSH／IVSL），and frequency input is FREQ．Q［0：2］is the range of voltage／current measurement，and $\mathrm{C}[0: 2]$ is the range of frequency measurement．Only 40 K to 400 MHz ranges are selectable here．Unlike frequency measurement（ $\mathrm{F}[0: 2]=$＂ 110 ＂），duty cycle is not measured in this mode．The conversion time is fixed at 110 ms ．Voltage／current can count up to 54,000 （or 540,000 when 10 MHz OSC is used）．AC and PEAK can still be active．D0 is the output of voltage／current，and $(10 \times \mathrm{D} 1)$ is the result of frequency．

（12）Capacitance Measurement

ES51966 measures capacitance with 8 ranges．Capacitance can only be counted to about 40,000 counts，no matter the oscillator frequency．The conversion time，measurement range and resolution are as the following table．

Range	Conversion time	Measured frequency range	Resolutions
4 nF	0.7 sec	4.0000 nF	0.1 pF
40 nF	0.7 sec	40.000 nF	1 pF
400 nF	0.7 sec	400.00 nF	10 pF
4 uF	0.7 sec	4.0000 uF	100 pF
40 uF	0.75 sec	40.000 uF	1 nF
400 uF	1.5 sec	400.00 uF	10 nF
4000 uF	3.75 sec	4000.0 uF	100 nF
40000 uF	7.5 sec	40000 uF	1 uF

If needed，ES51966 can discharge the capacitor automatically before measuring until this chip can guarantee that it can obtain proper values in next two measurements． However，discharging by chip is slow，especially when capacitor is large or there is high voltage on the capacitor．This is because ES51966 must discharge the capacitor through the PTC resistor（about $1.5 \mathrm{~K} \Omega$ ）for safety consideration．Therefore，it is strongly suggested that the user discharges the capacitor by himself when needed．If discharging occurs，the STATUS pin is pulled high immediately，and uP can check the STATUS to know if ES51966 is in discharging．

The application circuit of capacitance measurement is as Figure 10.1 ，the $9 \mathrm{~K} \Omega$ and $1 \mathrm{~K} \Omega$ resistors connected to R 9 K and R1K pins should be precision resistors．

Because there exists parasitic capacitor in the chip and the PCB board（about 200 $\sim 300 \mathrm{pF}$ ），compensation is required to prevent offset error at lower ranges（ $4 \mathrm{n} \sim 400 \mathrm{nF}$ ranges）．There are two methods to compensate the effect of the parasitic capacitors．One method is to measure the parasitic capacitors directly by opening the input（i．e．，the input capacitance is zero）and record this value for EACH RANGE（especially $4 \mathrm{nF} / 40 \mathrm{nF} / 400 \mathrm{nF}$ ），and then subtracting the value of that range after each measurement． Another method is to connect a compensation capacitor $\mathrm{C}_{\mathrm{CMP}}$ on the CCMP pin as the

Figure 10．1 Application circuit of capacitance measurement
figure above，and then ES51966 will execute the compensation automatically．The value of $\mathrm{C}_{\mathrm{CMP}}$ relates to the parasitic capacitor．The adequate value of CCMP is to let the display digits show about tens counts when input opens．

（13）SLEEP mode

If SLEEP bit is set＇ H ＇by uP，ES51966 enters sleep mode．In sleep mode，if SCLK keeps low，all the circuit is shut down，and the supply current is about 0.1 uA ．If SCLK is high in sleep mode，only the oscillator is active to prepare for the following re－power operation．

（14）Digital Signals Rising and Falling times

The digital signals include EOC，SCLK，and STATUS，and those rising and falling times are defined as follow：

EOC and STATUS are output to microprocessor：

SCLK and STATUS are input from microprocessor：

Symbol	Condition	Min	Max	Units
tro	A／D to uP	-	20	ns
tfo	A／D to uP	-	20	ns
tri	uP to A／D	-	20	ns
tfi	uP to A／D	-	20	ns

Application Circuit

承永資訊科技

Note：
1．In PEAK mode，the wire of SCLK STATUS EOC must be shielded to prevent from the noise．

2．In capacitance mode，a $10 \mathrm{k} \Omega$ resistor must be applied between V －and COM．
3．For the X10 feature，the BuffX10 resistor must be precisely adjusted to a tenth part of the Buffer resistor or the additional error will rice．$\left(\mathrm{R}_{\text {buff }}=10 \mathrm{R}_{\text {buffX10 }}\right)$
4．If use the AC－to－DC circuit as above schematic，the reading out will get a minus sign．Please ignore the minus sign instead of displaying．And the polarity of diode must not be changed．
5．The compensation capacitor Cp is used to compensate the error risen by the parasitic capacitance on PCB．The value of Cp should be approximately equal to the filter capacitor applied at pin OVX．
6．The Zener Diodes are used for IC protection，and MUST be soldered on PCB first before soldering IC．
＊In capacitance mode，change 33 nF to 220 nF or change $200 \mathrm{~K} \Omega$ to $1 \mathrm{M} \Omega$ ．
1．Tantalum capacitor
2．Tantalum capacitor

Package

64 pins QFP package size

SYMBOLS	MIN．	NOM	MAX．
A	-	-	3.40
$A 1$	0.25	-	-
$A 2$	2.55	2.72	3.05
b	0.35	0.40	0.50
C	0.11	0.15	0.23
D	25.00 BASIC		
$D 1$	20.00 BASIC		
B	1.00 BASIC		
E	19.00 BASIC		
$E 1$	14.00 BASIC		
L	1.15	1.30	
L1	2.50 REF		
θ°	0	3.45	

NOTES：
1．DATUM FLANE HIS LOCATED AT THE BOTTOM OF THE VOLD PARTING LINE COINCIDENT WTH WHERE THE LEAD EXIS THE BOOY．

2．DIMENSIONS DI AND EI DO NOT INCLUDE MOLD PROTRUSION．ALLOWAELE PROTRUSON IS 0.25 mm PER SIDE．DIMENSOONS DI AND E1 LD INCLUDE MOLD NISMATCH AND ARE DETERUINED AT DATUN FLANE ${ }^{-4}$ ．

3．DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION．

