承永資訊科技 CYRUSTEK CO．

Features

－19，999／1，999 counts dual LCD display
－LQFP－48 package for MCU（HT32F65240）
－LQFP－64 package for LCD driver（HT16C23A）
－SSOP－48L package for ES51920
－AutoLCR smart check and measurement
（Taiwan patent no．：456205）
－Series／Parallel modes are selectable．
－ $\mathrm{Ls} / \mathrm{Lp} / \mathrm{Cs} / \mathrm{Cp}$ with $\mathrm{D} / \mathrm{Q} / \theta / \mathrm{ESR}$ parameters
－Support DCR mode $200.00 \Omega \sim 200.0 \mathrm{M} \Omega$
－Five different test frequency are available：
100／120／1k／10k／100k Hz
－Test ac signal level： 0.6 mV RMS typ．
－ 6 range resistor range used
－Test range：（ex． $\mathrm{F}=1 \mathrm{kHz}$ ）
L： $200.00 \mu \mathrm{H} \sim 2000.0 \mathrm{H}$
C： $2000.0 \mathrm{pF} \sim 2.000 \mathrm{mF}$
R： $20.000 \Omega \sim 200.0 \mathrm{M} \Omega$
－Multi－level battery voltage detector
－Support Backlight \＆Buzzer sound driver
－Source resistance depends on range
Min： 120Ω typical
Max：1M Ω typical
－Open／Short calibration for AC impedance measurement is allowed：

Open condition requirement：Impedance is necessary to be larger than $9.5 \mathrm{M} \Omega @ 1 \mathrm{kHz}$ Short condition requirement：Impedance is necessary to be less than 1.1Ω

Application

Handheld LCR bridge meter

Description

The chipset is suitable for LCR bridge application．By using ES51920 to implement the LCR bridge meter，the complicated PCB design is not necessary．The ES51920 is the analog frond end chip with resistor switches network to provide different ranges control．It also provides a high－performance integrated circuit by the signal with different frequency to measure the complex impedance of the DUT （device under test）．The MCU is the mix－mode processing chip to handle the calculation of the D／Q／ESR／θ parameter with Ls／Lp／Cs／Cp values．It also provides the user interface and LCD drivers to support dual display operation． Tolerance mode and relative mode are including in the dual display operation．A multiple－level battery detection and auto power－off scheme are built－in to help the improvement of battery life．The high performance of 4.5 digits ADC circuit design is implemented in the chipset．A fully smart measurement for $\mathrm{L} / \mathrm{C} / \mathrm{R}$ is possible．User could measure the DUT impedance simply without change function key at the AUTOLCR smart mode．

Pin Assignment

Pin Description

HT32F65240

Pin No	Symbol	Type	Description
1	KEYIN1	I／O	KEYPAD input 1
2	KEYIN2	I／O	KEYPAD input 2
3	KEYIN3	I／O	KEYPAD input 3
4	NC	－	Not connected
5	KEYOUT0	I／O	KEYPAD output0
6	KEYOUT1	I／O	KEYPAD output 1
7	KEYOUT2	I／O	KEYPAD output2
8	KEYOUT3	I／O	KEYPAD output3
9	BZ	O	Buzzer output driver and normal low
10	BL	O	Backlight driver output and normal low
11	PWR＿KEY	I	Power keypad sense input
12	PWR	O	Power control output
13	CLDO		External Filter Capacitor Value for Internal Core Power Supply
14	VDD＿1	P	Digital power connected to 3.5 V
15	VSS＿1	G	Digital ground
16	／RESET	I	Power＿on＿reset
17	OP＿SEL	O	High／Low power OPAMP selection
18	SCL1	O	Serial clock for ES51920
19	SDA1	I／O	Serial I／O data for ES51920
20	TT3＿O	O	Timing control output 3
21	TT2＿O	O	Timing control output 2
22	TT1＿O	O	Timing control output1
23	UB	I	Unbalance detection
24	WP	O	Write protection for 24c02 EEPROM
25	NC	－	Not connected
26	TX	O	UART port output（9600bps）
27	NC	－	Not connected
28	NC	－	Not connected
29	SWDCLK	－	Clock for ISP
30	SWDIO	－	Data for ISP
31	SCL2	O	Serial clock for 24c02 EEPROM and LCD driver
32	SDA2	I／O	Serial I／O data for EEPROM and LCD driver
33	EN＿UART	I	Set to VDD to enable the UART port（internal pull－high），set to VS to disable the UART
34	CAL＿EN	I	Pull to VDD to make auto calibration procedures available（intern pull－high），set to VSS to disable the UART
35	VDD＿2	P	Digital power connected to 3.5 V
36	VSS＿2	G	Digital ground
37	LCD＿S6	I／O	LCD segment＿6 defined by user（See SEG39 of LCD table）
38	LCD＿S5	I／O	LCD segment＿5 defined by user（See SEG39 of LCD table）
39	LCD＿S4	I／O	LCD segment＿4 defined by user（See SEG39 of LCD table）
40	LCD＿S3	I／O	LCD segment＿3 defined by user（See SEG41 of LCD table）
41	LCD＿S2	I／O	LCD segment＿2 defined by user（See SEG41 of LCD table）
42	LCD＿S1	I／O	LCD segment＿1 defined by user（See SEG41 of LCD table）
43	NC	－	Not connected
44	NC	－	Not connected
45	APO＿DIS	I	Set to VDD to disable the auto power off mode
46	LBAT	I	Battery voltage detection input

47	VDDA	I	Reference voltage connected to 3．5V
48	VSSA	G	Analog ground

HT16C23A

1	VDD	P	Digital power connected to 3．5V	
2	SDA	I／O	Serial I／O data for EEPROM and LCD driver	
3	SCL	O	Serial clock for 24c02 EEPROM and LCD driver	
4	VSS	G	Digital ground	
5	COM1	O	LCD backplane signal＿1	
6	COM2	O	LCD backplane signal＿1	
7	COM3	O	LCD backplane signal＿1	
8	COM4	O	LCD backplane signal＿1	
$9-54$	SEG46－SEG01	O	LCD segment 1－46	
$55-63$	NC	-	Not connected	
64	VLCD	P	Power supply for LCD driver（V1＝VLCD	See page21）

ES51920

Pin No	Symbol	Type	Description
1	CLF2＋	I／O	External capacitor connection for low pass filter
2	CLF1＋	I／O	External capacitor connection for low pass filter
3	CLF1－	I／O	External capacitor connection for low pass filter
4	CLF4＋	I／O	External capacitor connection for low pass filter
5	CLF3＋	I／O	External capacitor connection for low pass filter
6	CLF3－	I／O	External capacitor connection for low pass filter
7	VSRC5	O	Source terminal＿5 for DUT
8	VSRC4	O	Source terminal＿4 for DUT
9	VSRC3	O	Source terminal＿3 for DUT
10	VSRC2	O	Source terminal＿2 for DUT
11	VSRC1	O	Source terminal＿1 for DUT
12	VDUTH	I	High sensed terminal for DUT
13	NC	－	
14	VDUTL	I	Low sensed terminal for DUT
15	SW1	I	Range ratio resistor1
16	SW2	I	Range ratio resistor2
17	SW3	I	Range ratio resistor3
18	SW4	1	Range ratio resistor4
19	SW5	I	Range ratio resistor5
20	SW6	I	Range ratio resistor6
21	RINT	I／O	Integrator resistor connection
22	CINT－	I／O	Integrator capacitor connection
23	CINT＋	I／O	Integrator capacitor connection
24	VDDA3	P	Analog power 3 （3．5V）
25	CR	I	Bias point
26	VRL	O	Common output
27	VSSA3	G	Analog ground 3
28	VR	I	Reference voltage input（ $\mathrm{V}_{\mathrm{R}}-\mathrm{V}_{\mathrm{RL}}=-500 \mathrm{mV}$ typ．）
29	VRH	O	Bandgap voltage output
30	CEB	I	Chip enable input
31	UB	O	Unbalance range output indication
32	OSC1	O	Oscillator output
33	OSC2	I	Oscillator input
34	TT1	I	Timing control input 1
35	TT2	I	Timing control input2
36	TT3	I	Timing control input 3
37	SCL	I	Serial bus clock
38	SDA	I／O	Serial bus data
39	OPSEL	I	OPAMP power selection
40	VSSD	G	Digital ground
41	VDDD	P	Digital power（3．5V）
42	VDDSC	P	Analog power（3．5V）
43	VSSSC	G	Analog ground
44	VSSA1	G	Analog ground 1
45	VDDA1	P	Analog power 1 （3．5V）
46	VDDA2	P	Analog power 2 （3．5V）

47	VSSA2	G	Analog ground 2
48	VCP	P	OP power（5V）

Absolute Maximum Ratings

Characteristic	Rating
Supply Voltage（VDD to VSS）	7 V
Digital Input	VSS -0.6 to VDD＋0．6
Power Dissipation．Flat Package	500 mW
Operating Temperature	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-50^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Electrical Characteristics

$\mathrm{TA}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Test Condition	Min．	Typ．	Max	Units
5V Power supply	VCP		－	5.0	－	V
3.5 V Power supply	$\begin{aligned} & \hline \text { VDDD } \\ & \text { DVDD } \\ & \text { VDDA } \\ & \text { AVDD } \\ & \text { VDDS } \end{aligned}$		－	3.5	－	V
5V Supply current	ICP	$\mathrm{VCP}=5 \mathrm{~V}$	－	1	－	mA
3.5 V Supply current	IDD	$\mathrm{F}=100 \mathrm{kHz}$	－	16.5	18	mA
$\begin{aligned} & \text { DVDD/AVDD }=3.5 \mathrm{~V} \\ & \text { VDDD/VDDA/VDDSC }=3.5 \mathrm{~V} \end{aligned}$	IDD	$\mathrm{F} \leq 10 \mathrm{kHz}$	－	13	15	mA
Test signal amplitude（DC mode）	$\mathrm{V}_{\text {DUT }}$	$\mathrm{R}_{\text {dut }}=10 \mathrm{k} \Omega$	－	0.9	－	V
Test signal amplitude（AC mode）	$\mathrm{V}_{\text {dut }}$	$\mathrm{R}_{\text {dut }}=10 \mathrm{k} \Omega$	－	0.63	－	$\mathrm{V}_{\text {RMS }}$
Basic accuracy（ $\mathrm{F} \leq 10 \mathrm{kHz}$ ） See page19 for details	Ae	10－100k Ω range	－	－	± 0.2	\％F．S ${ }^{1}$
Temperature coefficient for basic accuracy（Ae）	Tc	$\begin{aligned} & -20^{\circ} \mathrm{C}<\mathrm{TA}<70^{\circ} \mathrm{C} \\ & \text { ratio resistor }=0 \mathrm{ppm} \\ & \hline \end{aligned}$	－	－	100	ppm／$/{ }^{\circ} \mathrm{C}$
Band－gap reference voltage	$\mathrm{V}_{\text {BG }}$	$100 \mathrm{~K} \Omega$ resistor between VRH and VRL	－1．30	－1．22	－1．14	V
Peak－to－peak LCD drive voltage	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{COM}} \\ & \mathrm{~V}_{\mathrm{SEG}} \\ & \hline \end{aligned}$	62.5 Hz frame rate	－	3.0	－	V
LCD bias voltage configuration			$1 / 4$ duty$1 / 3$ biasA－type waveform			
Multi－level low battery detector	Vt1	VREF＝3．5V $\mathrm{V}_{\text {POWER＿SENSE }}$	－	2.801	－	v
	Vt2		－	2.538	－	
	Vt3		－	2.280	－	
	Vt4		－	2.018	－	
Reference voltage input	$\mathrm{V}_{\text {ReF }}$	VR－VRL	－510	－500	－490	mV

Note：
1．Full Scale ： 20000 counts
2．For best integral linearity of ADC，the metalized polypropylene film capacitor for CINT is necessary．
3．It is not recommended to use switching power for power supplying．

Functional description

Introduction

The chipset is a total solution for high accuracy LCR meter which could measure Inductance／Capacitance／Resistance with secondary parameters including dissipation factor（D），quality factor（Q），phase angle（ θ ），equivalent series／parallel resistance（ESR or $\mathrm{Rp})$ ．The chipset is fully auto ranging operation for AC impedance \＆DC resistance measurement．Because of high integrated circuit design，a smart measurement for $\mathrm{L} / \mathrm{C} / \mathrm{R}$ is possible（AUTOLCR mode）．It means the user could measure the $\mathrm{L} / \mathrm{C} / \mathrm{R}$ components directly at AUTOLCR smart mode without changing the function key．User could also select the target test frequencies of $100 \mathrm{~Hz} / 120 \mathrm{~Hz} / 1 \mathrm{kHz} / 10 \mathrm{kHz} / 100 \mathrm{kHz}$ depending on DUT type．Components could be measured in series or parallel mode according to the DUT impedance automatically．

The LCR chipset built－in a 4.5 digits ADC operates at $1.2 / \mathrm{s}$ updating rate nominally for $\mathrm{L} / \mathrm{C} / \mathrm{R}$ mode．The chipset operates at $0.5 / \mathrm{s}$ updating rate for DCR mode．

The general DMM could measure DC resistance only，but the LCR meter could measure DC resistance and AC impedance．The impedance consists of resistance（real part）and reactance（imaginary part）．For example，Zs represents the impedance in series mode．Zs can be defined a combination of resistance Rs and reactance Xs．It also could be defined as a $|Z|$ of magnitude with a phase angle θ ．

Imaginary axis（series mode）

$\mathrm{Zs}=\mathrm{Rs}+\mathrm{jXs}$ or $|\mathrm{Zs}| \angle \theta$
$|\mathrm{Z}|=\sqrt{R s^{2}+X s^{2}}$
$\mathrm{Rs}=|\mathrm{Zs}| \cos \theta$
$\mathrm{Xs}=|\mathrm{Zs}| \sin \theta$
$\mathrm{Xs} / \mathrm{Rs}=\tan \theta$
$\theta=\tan ^{-1}(\mathrm{Xs} / \mathrm{Rs})$
If $\theta>0$ ，the reactance is inductive．In other words，if $\theta<0$ ，the reactance is capacitive．

There are two types for reactance．The one is the inductive reactance X_{L} and the other is the capacitive reactance X_{C} ．They could be defined as：（ $f=$ signal frequency）

$$
\mathrm{X}_{\mathrm{L}}=2 \pi f \mathrm{~L}(\mathrm{~L}=\text { Inductance })
$$

$\mathrm{X}_{\mathrm{C}}=\frac{1}{2 \pi f \mathrm{C}} \quad(\mathrm{C}=$ Capacitance $)$

Measurement mode

The impedance could be measured in series or parallel mode．The impedance Z in parallel mode could be represented as reciprocal of admittance Y ．The admittance could be defined as $Y=G+j B$ ．The G is the conductance and the B is the susceptance．

Impedance in series mode

$$
Z=R s+j \times s
$$

Admittance in parallel mode

$$
Y=1 / Z=1 / R p+1 / j \backslash p=G+j B
$$

Rp ：Resistance in parallel mode
Xp：Reactance in parallel mode
Cp ：Capacitance in parallel mode
Lp：Inductance in parallel mode

There are two factors to provide the ratio of real part and imaginary part．Usually the quality factor Q is used for inductance measurement and the dissipation factor D is used for capacitance measurement．D factor is defined as a reciprocal of Q factor．
$\mathrm{Q}=1 / \mathrm{D}=\tan \theta$
$\mathrm{Q}=\mathrm{Xs} / \mathrm{Rs}=2 \pi f \mathrm{Ls} / \mathrm{Rs}=1 / 2 \pi f \mathrm{Cs} \mathrm{Rs}$
$\mathrm{Q}=\mathrm{B} / \mathrm{G}=\mathrm{Rp} /|\mathrm{Xp}|=\mathrm{Rp} / 2 \pi f \mathrm{Lp}=2 \pi f \mathrm{Cp} \mathrm{Rp}$

Actually，Rs and Rp are existed in the equivalent circuit of capacitor or inductor．If the capacitor is small， Rp is more important than Rs ．If capacitor is large，the Rs is more important also．Therefore，use parallel mode to measure lower value capacitor and use series mode to measure higher value capacitor．For inductor，the impedance relationship is different from capacitor．If the inductor is small， Rp is almost no effect．If inductor is large，the Rs is no effect also．Therefore，use series mode to measure lower value inductor and use parallel mode to measure higher value inductor．

Open／short calibration

The chipset provides the open／short calibration process to get the better accuracy for high／low impedance measurement．The purpose of open／short calibration is to reduce the parasitic effect of the test fixture．

Z_{M} is defined as total impedance measured to DUT by the special test fixture which has some parasitic impedance． $\mathrm{Z}_{\mathrm{M}}=(\mathrm{Rs}+\mathrm{j} \omega \mathrm{Ls})+\left(\frac{1}{G o+j \omega C o} \| \mathrm{Z}_{\mathrm{DUT}}\right)$

Zout is the target impedance user wants to realize．It is necessary to use the open／short calibration process to cancel the effect of $\mathrm{Rs}+\mathrm{j} \omega \mathrm{Ls}$ and Go＋j ω Co．

Equivalent circuit

$$
Z_{\text {DUT }}=\frac{Z_{M}-Z_{\text {SHORT }}}{1-\left(Z_{M}-Z_{\text {SHORT }}\right) Y_{\text {OPEN }}}
$$

KEYPADS CONFIGURATION

	KEYOUT0	KEYOUT1	KEYOUT2	KEYOUY3
KEYIN1	FUNC	HOLD	SETUP	ENTER
KEYIN2	CAL	SORTING	D／Q／θ \leftarrow	SER／PAL \rightarrow
KEYIN3	BKLIT	FREQ	RS232 \uparrow	REL\％ \downarrow

Push key function allowed to be active will be marked as＂＂

Keypads	FUNC	HOLD	DQ 0	S／P	BKLIT	RS232	SORT	REL\％	FREQ
AUTOLCR	\bullet	\checkmark			\bullet	\bullet			\bullet
L	\checkmark	\checkmark	\checkmark	\bullet	\checkmark	\checkmark	\checkmark	\bullet	\checkmark
C	\checkmark								
ACR	\bullet	\checkmark		\checkmark	\bullet	\checkmark	\checkmark	\bullet	\checkmark
DCR	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	

1．Power ON／OFF

The PWR＿KEY of MCU senses the external push keypad and control the PWR output to enable or disable the whole system power．When power on resets，the all LCD segments will be ON for 2 seconds．Then the default initialization process will be started．The default mode is AUTOLCR smart mode and the default test frequency is 1 kHz ．When the PWR＿KEY is pushed during power－on mode，the system will enter power－off mode．The LCD will show the＂OFF＂state before the whole system enters the power off status．

2．Auto power off

In order to extend the battery life，except of using external power supply，APO feature will be helpful．When all function keypads do not be pushed or impedance range switching not detected within 5 minutes，the system will launch the alarm buzzer beep at three times before the auto power－off status．During the period of alarm，the system will be kept in operation by pushing any function key again．If any key is not in operation further，the system power will be off．Set APO＿DIS to VDD will turn off the auto power off configuration．

3．Buzzer driver
If the function keypad available is pushed，the buzzer output（pin9 of MCU）beeps one 150 ms pulse．If the function keypad not available is pushed，the buzzer beeps double 150 ms pulses．

4．Backlight driver

When user push BKLIT keypad，the backlight driver（pin10 of MCU）will be active． Push the BKLIT key again to disable the backlight driver．When all function keypads do not be pushed or impedance range switching not detected within 60 seconds，the backlight driver will be disabled automatically．

5．Battery detect

The MCU will detect the battery multi－level voltages periodically．The LCD annunciators（BAT4～BAT1）of battery life will be disappeared according to the decreasing of battery voltage．

6．Primary impedance with secondary parameter test mode
When $A U T O / L / C / R$ function selection key（FUNC）is pushed，the main test mode could be selected sequentially：Auto－LCR mode \rightarrow Auto－L mode \rightarrow Auto－C mode \rightarrow Auto－R mode \rightarrow DCR mode \rightarrow Auto－LCR mode．The default test mode is Auto LCR mode which could check the type of impedance smartly and enter to the L／C／R measurement mode automatically．The secondary parameter will follow the $\mathrm{L} / \mathrm{C} / \mathrm{R}$ measurement．It means that $(\mathrm{L}+\mathrm{Q}),(\mathrm{C}+\mathrm{D})^{1},(\mathrm{R}+\theta)^{2}$ are combined in one group respectively．When Auto－L or Auto－C mode is selected，the impedance measurement is auto ranging．The primary LCD display will show the inductance or capacitance of DUT．The secondary LCD display will show the quality or dissipation factor．The phase angle or equivalent resistance can also be shown by pushing the PARAMETER（ $\mathrm{D} / \mathrm{Q} / \theta$ ）keypad to choose $\mathrm{D} / \mathrm{Q} / \theta / \mathrm{ESR}$ ．When Auto－R（ACR mode） or DCR mode is selected，the secondary parameter is omitted．

[^0]
7．Auto LCR smart mode

Due to high performance circuit design，the system decide which device measurement（ L or C or R ）is the best representation of DUT．
If $|\theta|<11^{\circ}$ ，the Auto－R mode is selected．The parameter on sub－display is θ ．
If $\theta>11^{\circ}$ ，the Auto－L mode is selected．The parameter on sub－display is Q ．
If $\theta<-11^{\circ}$ ，the Auto－C mode is selected．The parameter on sub－display is D ．If the C $<5 \mathrm{pF}$ ，the parameter on sub－display is parallel resistance Rp．

8．Series／Parallel mode select

When any $\mathrm{L} / \mathrm{C} / \mathrm{R}$ functional mode is selected，the default measurement in series or parallel mode is auto selected and the AUTO segment will be shown on LCD display．It depends on the total equivalent impedance measured．If the impedance is larger than $10 \mathrm{k} \Omega$ ，parallel mode is set and $\mathrm{Lp} / \mathrm{Cp} / \mathrm{Rp}$ is shown on the display．If it is less than $10 \mathrm{k} \Omega$ ，series mode is set and $\mathrm{Ls} / \mathrm{Cs} / \mathrm{Rs}$ is shown on the display．When SEL／PAL key is pushed，the impedance measurement will be set in series mode or in parallel mode sequentially．The LCD annunciators for $\mathrm{L}_{\mathrm{S}} / \mathrm{L}_{\mathrm{P}} / \mathrm{C}_{\mathrm{S}} / \mathrm{C}_{\mathrm{P}} / \mathrm{R}_{\mathrm{S}} / \mathrm{R}_{\mathrm{P}}$ symbols will be indicated by related LCR measurement mode setting．

9．Hold mode

Push the HOLD key to stop the reading of DUT on primary display．The current value of DUT will be updated continuously on the secondary LCD display．Push the $H O L D$ key again to cancel the hold mode and return to the original measurement mode．

10．RS232 mode

Set EN＿UART（pin33 of MCU）to VDD to enable the UART port available．Push the RS232 key to start a 9600bps RS232 transmission active．Push the RS232 key again to cancel the transmission．When RS232 output port is transmitting，a RS232 indication of LCD segment will be active．

承永資訊科技 CYRUSTEK CO．

11．Relative mode

Push the Relative key to reserve the current DUT readings（ $\mathrm{D}_{\mathrm{CUR}}$ ）on primary display as a reference value（ $\mathrm{D}_{\text {REF }}$ ）and the＂Δ＂annunciator will be active．The secondary display will show the percentage of relative value REL\％．The REL\％＝ （ $\mathrm{D}_{\text {CUR }}-\mathrm{D}_{\text {REF }}$ ）／ $\mathrm{D}_{\text {REF }} * 100 \%$ ．Push the Relative key again to show the reference value $D_{\text {REF }}$ on primary display and the＂Δ＂segment will be blinking．The percentage range is from $-99.9 \% \sim 99.9 \%$ ．When the relative value is larger than double of reference value（ $\mathrm{D}_{\mathrm{REF}}$ ），the＂OL\％＂indication will be shown on the secondary display．

12．Calibration mode

In order to improve the accuracy of high／low impedance，it is recommended to do OPEN／SHORT calibration mode before measurement．Push CAL keypad larger than 2 seconds to start the open／short calibration procedure：OPEN ready \rightarrow OPEN calibration \rightarrow SHORT ready \rightarrow SHORT calibration．During open or short calibration processing，the 30 －second countdown will be shown on LCD panels．If the calibration procedure is finished，the PASS or FAIL symbol will shown on the primary display．If PASS symbol for both OPEN and SHORT modes，the calibration data will be saved to external EEPROM after push CAL key again．

13．Sorting mode

The sorting mode could help the user to make a quick sort for a bunch of components．Push SORT key to enter to the sorting mode which will be set to 2000 digits display automatically．If the LCD reading is OL or less than 200 counts，the SORT key is not available．The primary display to show PASS or FAIL status depends on whether the impedance measured exceeds tolerance range．The current measurement result will be shown on the secondary display．When sorting mode is active，push SETUP keypad to modify the reference value，range and the tolerance settings sequentially．If the target is reached，push ENTER keypad to confirm it．Use the 4 direction keypads（ $\uparrow / \downarrow / \leftarrow / \rightarrow$ ）to change the target data easily．The reference value setting is available from 20 to 1999 counts．The tolerance range setting selection： $\pm 0.25 \% \rightarrow \pm 0.5 \% \rightarrow \pm 1 \% \rightarrow \pm 2 \% \rightarrow \pm 5 \% \rightarrow \pm 10 \% \rightarrow \pm 20 \% \rightarrow$ $+80 \%-20 \%$ ．The default tolerance is $\pm 1 \%$ ．

14．Test frequency select

When $F R E Q$ key is pushed，the test frequency will be changed sequentially．There are five different test frequencies $(100 \mathrm{~Hz} / 120 \mathrm{~Hz} / 1 \mathrm{kHz} / 10 \mathrm{kHz} / 100 \mathrm{kHz})$ can be selected．The LCR impedance scale ranges are depended on the test frequency．See next table of scale range description．

Resistance display range

Function	Frequency	Scale Range	Resolution
$\mathrm{R}_{\mathrm{S}} / \mathrm{R}_{\mathrm{P}}$	$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	200.00Ω	0.01Ω
	$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	$2.0000 \mathrm{k} \Omega$	0.1Ω
	100Hz／120Hz	$20.000 \mathrm{k} \Omega$	1Ω
	$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	$200.00 \mathrm{k} \Omega$	$0.01 \mathrm{k} \Omega$
	$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	$2.0000 \mathrm{M} \Omega$	$0.1 \mathrm{k} \Omega$
	$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	$20.000 \mathrm{M} \Omega$	$1 \mathrm{k} \Omega$
	$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	$200.0 \mathrm{M} \Omega$	$0.1 \mathrm{M} \Omega$
	1 kHz	20.000Ω	$1 \mathrm{~m} \Omega$
	1 kHz	200.00Ω	0.01Ω
	1 kHz	$2.0000 \mathrm{k} \Omega$	0.1Ω
	1 kHz	$20.000 \mathrm{k} \Omega$	1Ω
	1 kHz	$200.00 \mathrm{k} \Omega$	$0.01 \mathrm{k} \Omega$
	1 kHz	$2.0000 \mathrm{M} \Omega$	$0.1 \mathrm{k} \Omega$
	1 kHz	$20.000 \mathrm{M} \Omega$	$1 \mathrm{k} \Omega$
	1 kHz	$200.0 \mathrm{M} \Omega$	$0.1 \mathrm{M} \Omega$
	10 kHz	20.000Ω	$1 \mathrm{~m} \Omega$
	10 kHz	200．00	0.01Ω
	10 kHz	$2.0000 \mathrm{k} \Omega$	0.1Ω
	10 kHz	$20.000 \mathrm{k} \Omega$	1Ω
	10 kHz	$200.00 \mathrm{k} \Omega$	$0.01 \mathrm{k} \Omega$
	10 kHz	$2.0000 \mathrm{M} \Omega$	$0.1 \mathrm{k} \Omega$
	10 kHz	$20.00 \mathrm{M} \Omega$	$0.01 \mathrm{M} \Omega$
	100 kHz	20.000Ω	$1 \mathrm{~m} \Omega$
	100 kHz	200.00Ω	0.01Ω
	100 kHz	$2.0000 \mathrm{k} \Omega$	0.1Ω
	100 kHz	$20.000 \mathrm{k} \Omega$	1Ω
	100 kHz	$200.00 \mathrm{k} \Omega$	$0.01 \mathrm{k} \Omega$
	100 kHz	$2.000 \mathrm{M} \Omega$	$1 \mathrm{k} \Omega$

DC resistance display range

Function	Scale Range	Resolution
DCR	200.00Ω	0.01Ω
	$2.0000 \mathrm{k} \Omega$	0.1Ω
	$20.000 \mathrm{k} \Omega$	1Ω
	$200.00 \mathrm{k} \Omega$	$0.01 \mathrm{k} \Omega$
	$2.0000 \mathrm{M} \Omega$	$0.1 \mathrm{k} \Omega$
	$20.000 \mathrm{M} \Omega$	$1 \mathrm{k} \Omega$
	$200.0 \mathrm{M} \Omega$	$0.1 \mathrm{M} \Omega$

Capacitance display range

Function	Frequency	Scale Range	Resolution
$\mathrm{C}_{S} / \mathrm{CP}_{P}$	$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	$20.000 \mathrm{nF}^{1}$	1 pF
	$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	200.00 nF	0.01 nF
	$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	2000.0 nF	$0.1 n \mathrm{~F}$
	$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	20.000 uF	1 nF
	$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	200.00 uF	0．01uF
	$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	2000．0uF	0.1 uF
	$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	20.00 mF	0.01 mF
	1 kHz	2000.0 pF	0．1pF
	1 kHz	20.000 nF	1 pF
	1 kHz	200.00 nF	0.01 nF
	1 kHz	2000.0 nF	0.1 nF
	1 kHz	20.000 uF	1 nF
	1 kHz	200.00 uF	0．01uF
	1 kHz	2000uF	1 uF
	10 kHz	200.00 pF	0.01 pF
	10 kHz	2000.0 pF	0.1 pF
	10 kHz	20.000 nF	1 pF
	10 kHz	200.00 nF	0.01 nF
	10 kHz	2000.0 nF	0.1 nF
	10 kHz	20.000 uF	1 nF
	10 kHz	200．0uF	0.1 uF
	100 kHz	200.00 pF	0.01 pF
	100 kHz	2000.0 pF	0.1 pF
	100 kHz	20.000 nF	1 pF
	100 kHz	200.00 nF	0.01 nF
	100 kHz	2000.0 nF	0.1 nF
	100 kHz	20.00 uF	0．01uF

${ }^{1}$ If the counts of LCD display are less than 2000，the unit will be＂pF＂．

Inductance display range

Function	Frequency	Scale Range	Resolution
	$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	$20.000 \mathrm{mH}^{2}$	1 uH
	$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	200.00 mH	0.01 mH
	$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	2000.0 mH	0.1 mH
	$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	20.000 H	1 mH
	$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	200.00 H	0.01 H
	$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	2000.0 H	0.1 H
	$100 \mathrm{~Hz} / 120 \mathrm{~Hz}$	20.000 kH	0.001 kH
	1 kHz	2000.0 uH	0.1 uH
	1 kHz	20.000 mH	1 uH
	1 kHz	200.00 mH	0.01 mH
	1 kHz	2000.0 mH	0.1 mH
	1 kHz	20.000 H	1 mH
	1 kHz	200.00 H	0.01 H
	1 kHz	2000.0 H	0.1 H
	10 kHz	200.00 uH	0.01 uH
	10 kHz	2000.0 uH	0.1 uH
	10 kHz	20.000 mH	1 uH
	10 kHz	200.00 mH	0.01 mH
	10 kHz	2000.0 mH	0.1 mH
	10 kHz	20.000 H	1 mH
	100 kHz	20.000 uH	0.001 uH
	100 kHz	200.00 uH	0.01 uH
	100 kHz	2000.0 uH	0.1 uH
	100 kHz	20.000 mH	1 uH
	100 kHz	200.00 mH	0.01 mH

${ }^{2}$ If the counts of LCD display are less than 2000，the unit will be＂uH＂．

Accuracy（Ae）vs．Impedance（ $\mathrm{Z}_{\mathrm{Dut}}$ ）＠ $\mathbf{T a}=\mathbf{1 8} \sim 28{ }^{\circ} \mathrm{C}$

Freq．／Z	0．1－1 Ω	1－10ת	10－100k Ω	100k－1M	1M－20M	20M－200M 2	Remark
DCR	1．0\％＋5d	0．5\％＋3d	$0.3 \%+2 \mathrm{~d}$	$0.5 \%+3 \mathrm{~d}$	$1.0 \%+5 \mathrm{~d}$	$2.0 \%+5 \mathrm{~d}$	D＜ 0.1
100／120Hz	1．0\％＋5d	0．5\％＋3d	$0.3 \%+2 \mathrm{~d}$	$0.5 \%+3 \mathrm{~d}$	$1.0 \%+5 \mathrm{~d}$	$2.0 \%+5 \mathrm{~d}$	
1 kHz	1．0\％＋5d	0．5\％＋3d	$0.3 \%+2 \mathrm{~d}$	$0.5 \%+3 \mathrm{~d}$	$1.0 \%+5 \mathrm{~d}$	5．0\％＋5d	
10 kHz	$1.0 \%+5 \mathrm{~d}$	0．5\％＋3d	$0.3 \%+2 \mathrm{~d}$	$0.5 \%+3 \mathrm{~d}$	$2.0 \%+5 \mathrm{~d}$	N／A	
100 kHz	2．0\％＋5d	1．0\％＋5d	$0.5 \%+3 \mathrm{~d}$	$1.0 \%+5 \mathrm{~d}$	$2.0 \%+5 \mathrm{~d}(1 \mathrm{M}-2 \mathrm{M} \Omega)$		

Note：All accuracy is guaranteed by proper ratio resistor calibration and open／short calibration．All accuracy is guaranteed for 10 cm distance from VDUTH／VDUTL pins of ES51920．

If $\mathrm{D}>0.1$ ，the accuracy should be multiplied by $\sqrt{1+D^{2}}$
$\mathrm{Z}_{\mathrm{C}}=1 / 2 \pi f \mathrm{C}$ if $\mathrm{D} \ll 0.1$ in capacitance mode
$\mathrm{Z}_{\mathrm{L}}=2 \pi f \mathrm{~L} \quad$ if $\mathrm{D} \ll 0.1$ in inductance mode

Sub－display parameters accuracy
$\mathrm{Ae}=$ impedance (Z) accuracy
Definition： $\mathrm{Q}=1 / D$

$$
\mathrm{Rp}=\mathrm{ESR}(\text { or Rs }) \times\left(1+1 / D^{2}\right)
$$

1． D value accuracy $\mathrm{De}= \pm \mathrm{Ae} \times(1+\mathrm{D})$
2．ESR accuracy $\mathrm{Re}= \pm \mathrm{Z}_{\mathrm{M}} \times \operatorname{Ae}(\Omega)$
ie．， $\mathrm{Z}_{\mathrm{M}}=$ impedance calculated by $1 / 2 \pi f C$ or $2 \pi f \mathrm{~L}$
3．Phase angle θ accuracy $\theta \mathrm{e}= \pm(180 / \pi) \times$ Ae（deg）

4－terminals measurement with guard shielding

The DUT test leads are implemented by four terminals measurement．For achieve the accuracy shown above，it is necessary to do open／short calibration process before measurement．The test leads for DUT should be as short as possible．If long extended cable is used，the guard shielding is necessary．

LCD Truth table

LCD Segment	COM1	COM2	COM3	COM4
SEG01	Ls1	Cs1	Rs	，
SEG02	Lp1	Cp1	Rp1	DCR
SEG03	－	1－1	－	
SEG04	1A	1F	1 E	P1
SEG05	1B	1 G	1C	1D
SEG06	2A	2F	2 E	P2
SEG07	2B	2G	2C	2D
SEG08	3A	3F	3E	P3
SEG09	3B	3G	3C	3D
SEG10	4A	4F	4E	P4
SEG11	4B	4G	4C	4D
SEG12	HOLD	CAL	APO	，
SEG13	Auto	LCR	Range	x1
SEG14	p9	M1	k1	ת1
SEG15	n1	u1	nx1	H1
SEG16	n2	u2	nx2	F1
SEG17	ESR	D	，	
SEG18	RP2	Q	θ	，
SEG19	，	，	F2	H2
SEG20	5A	5F	5E	，
SEG21	5B	5G	5C	5D
SEG22	6A	6F	6 E	P6
SEG23	6B	6G	6C	6D
SEG24	7A	7F	7 E	P7
SEG25	7B	7G	7C	7 D
SEG26	8A	8F	8 E	P8
SEG27	8B	8G	8C	8D
SEG28	－	x 2	p10	x3
SEG29	－	M2	n3	n4
SEG30	－	k2	u3	u4
SEG31	－	ת2	nx3	nx 4
SEG32	b0	b1	b2	b3
SEG33	b7	b6	b5	b4
SEG34	b8	b9	b10	b11
SEG35	b15	b14	b13	b12
SEG36	b16	b17	b18	b19
SEG37	b23	b22	b21	b20
SEG38	－	b24	b25	＋OL
SEG39	，	LCD＿S4	LCD＿S5	LCD＿S6
SEG40	0－2	0－3	k3	Hz
SEG41		LCD＿S1	LCD＿S2	LCD＿S3
SEG42	BAT4	BAT3	120	1－5
SEG43	BAT1	BAT2	RS232	，
SEG44	TOL	－	2－1	0－1
SEG45	＋	o1	1－3	－
SEG46	Sorting	5－1	x4	＋80\％

LCD configuration

LCD display active condition

LCD annunciates	Condition
Ls1／Cs1	Inductance or Capacitance in series mode is active．
Lp1／Cp1	Inductance or Capacitance in parallel mode is active．
Rs／ESR	AC Resistance in series mode／Equivalence series resistance is active．
Rp1／Rp2	AC Resistance in parallel mode is active．
DCR	DC resistance mode is selected
HOLD	HOLD function is enabled．
CAL	Open／Short calibration process is enabled
APO	Auto power off function is available．
Auto	Impedance measured in series or in parallel automatically
LCR	Checking for L／C／R mode automatically
Range	Range selection is enabled on setup menu of sorting mode．
$\mathrm{X} 1(\Delta)$	Relative percentage function is enabled．
0／x2	Phase angle for impedance measurement
x3	The percentage display in relative mode
p9／p10	In capacitance mode and the range displayed is in the order of pF
M1／M2	In resistance mode and the range displayed is in the order of M Ω
k1／k2	In resistance mode and the range displayed is in the order of $\mathrm{k} \Omega$ In inductance mode and the range displayed is in the order of kH
$\mathrm{n} 1 / \mathrm{nx} 1 / \mathrm{n} 4 / \mathrm{nx} 4$	In inductance mode and the range displayed is in the order of mH
u1／u4	In inductance mode and the range displayed is in the order of uH
$\mathrm{n} 2 / \mathrm{nx} 2 / \mathrm{n} 3 / \mathrm{nx} 3$	In capacitance mode and the range displayed is in the order of mF
u2／u3	In capacitance mode and the range displayed is in the order of uF
D／Q	Dissipation or Quality factor is active for L／C measurement mode
b0－b25	Bar－graph display
Sorting	Sorting function is enabled

Tol $\pm .1205 \%+80 \%$	Tolerance indication in sorting mode
RS232	UART transmission is active
k3／Hz	Test frequency indication
BAT1－BAT4	Battery voltage indication
p1－p8	Decimal points on primary and secondary display
nA－nG	Seven－segment display of $\mathrm{n}^{\text {th }}$ digit
LCD＿Sn	LCD segment hardware defined by user（MCU pin37－42）

LCD COM／SEG driver output

LCD SEGn ON when COM3 is active

$1 / 4$ duty $1 / 3$ bias frame rate 62.5 Hz

RS232 transmission format

When $E N_{-} U A R T$ pin（ pin 33 of MCU）is pulled to VDD，it means the UART port is available．Push RS232 function key to enable the RS232 transmission．The packet rate is two times per second．Each transmission includes 17 bytes totally．

Baud rate	9600 bps
Start bit	1 bit
Data bits	8 bits
Stop bit	1 bit
Parity	No Parity

Data transmission configuration

Byte 0	Byte 1	Byte 2－14	Byte 15	Byte 16
00 H	0 DH	Data	0 DH	0 AH

Data format description

Byte No．	Data byte	
0	START	The content of start byte is 00h
1	LENGTH	The data length of transmission is 13 bytes（ODh）
2	STATUS0	Status0 indication
3	STATUS1	Status1 indication
4	STATUS2	Status2 indication
5	MMOD	Operation mode of primary display
6	MREADH	High byte of primary display data
7	MREADL	Low byte of primary display data
8	MSCOPE	Ranging information of primary display data
9	MSTATUS	Status byte of primary display data
10	SMOD	Operation mode of secondary display
11	SREADH	High byte of secondary display data
12	SREADL	Low byte of secondary display data
13	SSCOPE	Ranging information of secondary display data
14	SSTATUS	Status byte of secondary display data
15	END0	The content of end0 byte is 0Dh
16	END1	The content of end1 byte is 0Ah

STATUS0（Byte 2）

Bit No．	Data bit	Function
0	HOLD	Set to 1 when data hold is active
1	RELRF	Set to 1 when relative reference mode is active
2	REL	Set to 1 when relative $\%$ mode is active
3	CAL	Set to 1 when open／short calibration mode is active
4	SORT	Set to 1 when sorting mode is active
5	AUTOLCR	Set to 1 when auto LCR smart mode is active
6	AMOD	Set to 1 when auto series／parallel mode is active
7	MOD	LCR test mode： $0:$ in series $1:$ in parallel

STATUS1（Byte 3）

Bit No．	Data bit	
0	Extra4	User define LCD segment
1	Extra5	User define LCD segment
2	Extra6	User define LCD segment
		Battery life indication：
3	BAT0	00：Lower than 5%
4	BAT1	01：Lower than 30%
		$10:$ Lower than 60%
		11：Higher than 60%
		Test frequency ranges：
5	FREQ0	$000: 100 \mathrm{~Hz}$
6	FREQ1	$001: 120 \mathrm{~Hz}$
7	FREQ2	$010: 1 \mathrm{kHz}$
		$011: 10 \mathrm{kHz}$
		$100: 100 \mathrm{kHz}$

STATUS2（Byte 4）

Bit No．	Data bit	Function
		Tolerance range at sorting mode：
		$0011: \pm 0.25 \%$
0	SORTP0	$0100: \pm 0.5 \%$
1	SORTP1	$0101: \pm 1.0 \%$
2	SORTP2	$0110: \pm 2.0 \%$
3	SORTP3	$0111: \pm 5.0 \%$
		$1000: \pm 10.0 \%$
		$1001: \pm 20.0 \%$
4	Extra1	$1010:+80 \% /-20 \%$
5	Extra2	User define LCD segment
6	Extra3	User define LCD segment
7	X	Not available

MMOD（Byte 5）

Bit No．	Data bit	Function
		Primary display mode：
0	MMOD0	000：None
1	MMOD1	001：L（Inductance）mode
2	MMOD2 C（Capacitance）mode	
		101：R（Resistance）mode
		100：DCR mode
3	X	Not available
4	X	Not available
5	X	Not available
6	X	Not available
7	X	Not available

MREADH（Byte 6）／MREADL（Byte 7）

Bit No．	Data bit	
0		
1		
2		
3	MRL0	
4	\mid	
5	MRL7	
6		
7		
0		
1		
2		
3	MRH0	
4		
5	MRH7	
6		
7		

MSCOPE（Byte 8）

Bit No．	Data bit	
		Decimal point location on primary display ：
0	MDOT0	$000: 19999$
1	MDOT1	$001: 1999.9$
2	MDOT2	$010: 199.99$
		$011: 19.999$
		$100: 1.9999$
		Unit of ranging on primary display：
		$00000:$ None
		$00001: \Omega$
		$00010: \mathrm{k} \Omega$
3	MUNIT0	$00011: \mathrm{M} \Omega$
4	MUNIT1	$00100: \mathrm{None}$
5	MUNIT2	$00101: \mathrm{uH}$
6	MUNIT3	$00110: \mathrm{mH}$
7	MUNIT4	$00111: \mathrm{H}$
		$01000: \mathrm{kH}$
		$01001: \mathrm{pF}$
		$01010: \mathrm{nF}$
		$01011: \mathrm{uF}$
		$01100: \mathrm{mF}$

MSTATUS（Byte 9）

Bit No．	Data bit	Function
$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	MDIS0 MDIS1 MDIS2 MDIS3 MDIS4	The contents on primary display： 00000：Number 00001：Space 00010：Dash 00011：OL 00100：OFF 00101：None 00110：Err 00111：Pass 01000：Fail 01001：Open 01010：Short（Stt）
5	MDASH	Set to 1 if dash＂－－－－＂shown on display
6	MOL	Set to 1 if OL shown on display
7	MCNT	Primary display count： 0： 20000 counts 1： 2000 counts

SMOD（Byte 10）

Bit No．	Data bit	Function
		Secondary display mode：
0	SMOD0	000：None
1	SMOD1	001：（Dissipation factor）
2	SMOD：Q（Quality factor）	
		101：ESR or Rp（Equivalent resistance） SMOD
3	X	Not availabe angle）
4	X	Not available
5	X	Not available
6	X	Not available
7	X	Not available

SREADH（Byte 11）／SREADL（Byte 12）

Bit No．	Data bit	
0		
1		
2	SRL0	
3	\mid	
4	SRL7	
5		
6		
7		
0		
1		
2		
3	SRH0	
4		
5	SRH7	
6		
7		

SSCOPE（Byte 13）

Bit No．	Data bit	
		Decimal point location on secondary display ：
0	SDOT0	$000: 19999$
1	SDOT1	$001: 1999.9$
2	SDOT2	$010: 199.99$
		$011: 19.999$
		$100: 1.9999$
		Unit of ranging on secondary display：
		$00000: \mathrm{None}$
		$00001: \Omega$
		$00010: \mathrm{k} \Omega$
		$00011: \mathrm{M} \Omega$
3	SUNIT0	$00100: \mathrm{None}$
4	SUNIT1	$00101: \mathrm{uH}$
5	SUNIT2	$00110: \mathrm{mH}$
7	SUNIT3	$00111: \mathrm{H}$
	SUNIT4	$01000: \mathrm{kH}$
		$01001: \mathrm{pF}$
		$01010: \mathrm{nF}$
		$01011: \mathrm{uF}$
		$01100: \mathrm{mF}$
		$01101: \%$
		$01110: \mathrm{deg}$

SSTATUS（Byte 14）

Bit No．	Data bit	Function
$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	MDIS0 MDIS1 MDIS2 MDIS3 MDIS4	The contents on secondary display： 00000：Number 00001：Space 00010：Dash 00011：OL 00100：OFF 00101：None 00110：Err 00111：Pass 01000：Fail 01001：Open 01010：Short（Srt）
5	MDASH	Set to 1 if dash（＂－－－－＂）shown on display
6	MOL	Set to 1 if OL shown on display
7	MCNT	Primary display count： 0： 20000 counts 1： 2000 counts

0
 承永資訊科技 CYRUSTEK CO．

Application circuit

Package information（SSOP－48L）

DETAIL ：A

SYMBOLS	MIN．	NOM．	MAX．
A	0.095	0.102	0.110
A1	0.008	0.012	0.016
A2	0.089	0.094	0.099
b	0.008	0.000	0.013
c	-	0.008	-
D	0.620	0.625	0.630
E	0.291	0.295	0.299
e	-	0.025	-
He	0.396	0.406	0.416
L	0.020	0.030	0.040
L1	-	0.056	-
Y	-	-	0.003
θ°	0^{\prime}	-	8^{\prime}

NOTES：
1．DATUM PLANE BIS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY．

2．DIMENSIONS E AND D DO NOT INCLUDE MOLD PROTRUSION．ALLOWABLE PROTRUSION IS 6 MIL PER SIDE．DIMENSIONS E AND D DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE $⿴ 囗 十 ⺝$

3．DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION．

（ 承永資訊科技 CYRUSTEK CO．

Package information（LQFP－64）

64－pin LQFP（ $7 \mathrm{~mm} \times 7 \mathrm{~mm}$ ）Outline Dimensions

Symbol	Dimensions in inch		
	Min．	Nom．	Max．
A	-	0.354 BSC	-
B	-	0.276 BSC	-
C	-	0.354 BSC	-
D	-	0.276 BSC	-
E	-	0.016 BSC	-
F	0.005	0.007	0.009
G	0.053	0.055	0.057
H	-	-	0.063
J	0.002	-	0.006
K	0.018	0.024	0.030
a	0.004	-	0.008

Symbol	Dimensions in mm		
	Min．	Nom．	Max．
A	-	9.00 BSC	-
B	-	7.00 BSC	-
C	-	9.00 BSC	-
D	-	7.00 BSC	-
E	-	0.40 BSC	-
F	0.13	0.18	0.23
G	1.35	1.40	1.45
H	-	-	1.60
J	0.05	-	0.15
K	0.45	0.60	0.75
a	0.09	-	0.20
	0°	-	7°

（4）承永資訊科技 CYRUSTEK CO．

Package information（LQFP－48）

48－pin LQFP（ $7 \mathrm{~mm} \times 7 \mathrm{~mm}$ ）Outline Dimensions

Symbol	Dimensions in inch		
	Min．	Nom．	Max．
A	-	0.354 BSC	-
B	-	0.276 BSC	-
C	-	0.354 BSC	-
D	-	0.276 BSC	-
E	-	0.020 BSC	-
F	0.007	0.009	0.011
G	0.053	0.055	0.057
I	-	-	0.063
J	0.002	-	0.006
a	0.018	0.024	0.030

Symbol	Dimensions in mm		
	Min．	Nom．	Max．
A	-	9.0 BSC	-
B	-	7.0 BSC	-
C	-	9.0 BSC	-
D	-	7.0 BSC	-
E	-	0.5 BSC	-
F	0.17	0.22	0.27
H	1.35	1.4	1.45
I	-	-	1.60
K	0.05	-	0.15
a	0.45	0.60	0.75

[^0]: ${ }^{1}$ Note：When Auto－LCR mode is active，the secondary parameter will show the equivalent resistance in parallel mode (Rp) to replace the D factor if the C measured value of DUT is less than 5 pF ．
 ${ }^{2}$ Note：Auto－LCR mode only．During Auto－R mode or DCR mode，the secondary parameter is not available．

